336 research outputs found

    Software Engineering Challenges for Investigating Cyber-Physical Incidents

    Get PDF
    Cyber-Physical Systems (CPS) are characterized by the interplay between digital and physical spaces. This characteristic has extended the attack surface that could be exploited by an offender to cause harm. An increasing number of cyber-physical incidents may occur depending on the configuration of the physical and digital spaces and their interplay. Traditional investigation processes are not adequate to investigate these incidents, as they may overlook the extended attack surface resulting from such interplay, leading to relevant evidence being missed and testing flawed hypotheses explaining the incidents. The software engineering research community can contribute to addressing this problem, by deploying existing formalisms to model digital and physical spaces, and using analysis techniques to reason about their interplay and evolution. In this paper, supported by a motivating example, we describe some emerging software engineering challenges to support investigations of cyber-physical incidents. We review and critique existing research proposed to address these challenges, and sketch an initial solution based on a meta-model to represent cyber-physical incidents and a representation of the topology of digital and physical spaces that supports reasoning about their interplay

    Using Problem Frames and projections to analyze requirements for distributed systems

    Get PDF
    Subproblems in a problem frames decomposition frequently make use of projections of the complete problem context. One specific use of projec-tions occurs when an eventual implementation will be distributed, in which case a subproblem must interact with (use) the machine in a projection that represents another subproblem. We refer to subproblems used in this way as services, and propose an extension to projections to represent services as a spe-cial connection domain between subproblems. The extension provides signifi-cant benefits: verification of the symmetry of the interfaces, exposure of the machine-to-machine interactions, and prevention of accidental introduction of shared state. The extension’s usefulness is validated using a case study

    The conundrum of categorising requirements: managing requirements for learning on the move

    Get PDF
    This paper reports on the experience of eliciting and managing requirements on a large European-based multinational project, whose purpose is to create a system to support learning using mobile technology. The project used the socio-cognitive engineering methodology for human-centered design and the Volere shell and template to document requirements. We provide details about the project below, describe the Volere tools, and explain how and why we used a flexible categorization scheme to manage the requirements. Finally, we discuss three lessons learned: (1) provide a flexible mechanism for organizing requirements, (2) plan ahead for the RE process, and (3) do not forget 'the waiting room

    Patterns for service-oriented information exchange requirements

    Get PDF
    Service-Oriented Computing (SOC) is an emerging computing paradigm that supports loosely-coupled inter-enterprise interactions. SOC interactions are predominantly specified in a procedural manner that defines message sequences intermixing implementation with business requirements. In this paper we present a set of patterns concerning requirements of information exchange between participants engaging in service-oriented interactions. The patterns aim at explicating and elaborating the business requirements driving the interaction and separating them from implementation concerns

    Composing features by managing inconsistent requirements

    Get PDF
    One approach to system development is to decompose the requirements into features and specify the individual features before composing them. A major limitation of deferring feature composition is that inconsistency between the solutions to individual features may not be uncovered early in the development, leading to unwanted feature interactions. Syntactic inconsistencies arising from the way software artefacts are described can be addressed by the use of explicit, shared, domain knowledge. However, behavioural inconsistencies are more challenging: they may occur within the requirements associated with two or more features as well as at the level of individual features. Whilst approaches exist that address behavioural inconsistencies at design time, these are overrestrictive in ruling out all possible conflicts and may weaken the requirements further than is desirable. In this paper, we present a lightweight approach to dealing with behavioural inconsistencies at run-time. Requirement Composition operators are introduced that specify a run-time prioritisation to be used on occurrence of a feature interaction. This prioritisation can be static or dynamic. Dynamic prioritisation favours some requirement according to some run-time criterion, for example, the extent to which it is already generating behaviour

    On the Automated Management of Security Incidents in Smart Space

    Get PDF
    The proliferation of smart spaces, such as smart buildings, is increasing opportunities for offenders to exploit the interplay between cyber and physical components, in order to trigger security incidents. Organizations are obliged to report security incidents to comply with recent data protection regulations. Organizations can also use incident reports to improve security of the smart spaces where they operate. Incident reporting is often documented in structured natural language. However, reports often do not capture relevant information about cyber and physical vulnerabilities present in a smart space that are exploited during an incident. Moreover, sharing information about security incidents can be difficult, or even impossible, since a report may contain sensitive information about an organization. In previous work, we provided a meta-model to represent security incidents in smart spaces. We also developed an automated approach to share incident knowledge across different organizations. In this paper we focus on incident reporting. We provide a System Editor to represent smart buildings where incidents can occur. Our editor allows us to represent cyber and physical components within a smart building and their interplay. We also propose an Incident Editor to represent the activities of an incident, including —for each activity— the target and the resources exploited, the location where the activity occurred, and the activity initiator. Building on our previous work, incidents represented using our editor can be shared across various organizations, and instantiated in different smart spaces to assess how they can re-occur. We also propose an Incident Filter component that allows viewing and prioritizing the most relevant incident instantiations, for example, involving a minimum number of activities. We assess the feasibility of our approach in assisting incident reporting using an example of a security incident that occurred in a research center
    corecore